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1    Resin-Transfer Mold Filling Problem 

Resin transfer molding (RTM) is an emerging manufacturing technology well- 
suited for fabricating large structural components made of composite mate- 
rials. Since the process involves matched metal tooling, the technique seems 
ideal for situations requiring close tolerances. Construction of aircraft struc- 
tures and vehicle components fit this characterization. Furthermore, liquid 
injection molding represents one of the most economical means of manufac- 
turing. RTM is an adaptation on a process widely used for plastics. Instead 
of injecting into an empty cavity, the mold is packed with a woven fiber 
preform. The RTM process has two main stages: filling the mold with a 
resin/catalyst mixture and curing the part. 

At present, most of the difficulties of incorporating RTM revolve around 
the filling. To create an acceptable composite part requires the preform 
to be completely impregnated with resin. This is largely controlled by the 
fluid dynamics of the resin flow into the fiber reinforcement. The conditions 
which most strongly influence the flow are: mold geometry, resin rheology, 
preform permeability, and location of the injectors/vents. The first three 
conditions are typically determined by the part design itself; the last one is a 
manufacturing consideration. Incorrect placement of the injectors and vents 
for a given geometry and resin/preform system will create dry spots in the 
cured part. 

To enhance the economic viability of RTM applications, it is desirable to 
evaluate mold design, via computer-based methods, prior to mold construc- 
tion. Predictive modeling of resin flow through a fiber preform is currently 
an important priority in mold design and evaluation, because of the need 
to predict fill times and wet-out patterns. Ongoing research also includes 
control algorithms for the filling stage using networks of embedded sensors 
and a fast-filling simulation [1, 2]. 

Simulation of the RTM process may be isothermal or nonisothermal, de- 
pending upon whether temperature effects are accounted for in the model. 
During filling, resin viscosity is affected by temperature variations. During 
curing, gel times are affected by temperature profiles. For a mathematical 
formulation of the nonisothermal RTM process, see [3]. We focus on the 
isothermal case under the assumption of minimal temperature variation dur- 
ing filling. 



The isothermal RTM filling problem is a transient, free-boundary prob- 
lem of predicting the position of the resin flow front in the porous medium 
as a function of injection pressures and time. The resin is assumed to be 
nearly compressible and to display Newtonian behavior. The fiber preform 
is assumed to be non-deforming. It is assumed that Darcy's law governs the 
relation between resin velocity, v, and pressure p, such that 

v = -fi-'KVp, (1) 

where \i is the viscosity and K is a tensor representing the permeability of 
the fiber preform. Preforms are usually constructed from several layers of 
fiber mat oriented in different directions. Permeabilities are experimentally 
calculated for mat samples and reported in terms of the principal directions 
of the mat. Thus, the average (through-thickness) permeability is a function 
of several factors [4]. Since permeabilities along the principal axes can easily 
differ by an order of magnitude, the ability to specify K on a local basis is 
essential in simulation. 

Let ficR3 define the interior of the mold, Tw the impermeable mold 
walls, Th the constant displacement injectors, and Tg the constant pressure 
injectors so that the complete assembly includes 

U = o u rw u rfc u vg. (2) 
Let ü(t) C ft denote the filled portion of the mold interior at time t and T3(t) 
the free surface at time t. On the air side of the surface, the capillary fringe 
is neglected and a constant pressure (typically, atmospheric or vacuum) is 
assumed in the unfilled portion of the mold {fi \ fl(t)}. _ 

The isothermal RTM filling problem is to find for any t > 0, r,(t) : il H 

R3 and p : Q(t) i-> R such that 

V-i^KVp)   =   0 in ü(t) (3) 
n-ifi^KWp)   =   0 on Tw (4) 
n-ifi^KWp)   =   A(x) on Th (5) 

P   =   fl'(x) on Tg (6) 
p   =   0 on Ts(t) (7) 

n • {n~lKVp)   =   -n • 
dTs 

(8) 



Figure 1: Two-Dimensional RTM Mold. Resin flow front is a free surface. 

where n denotes the vector normal to T. The quantity / = n • v is defined as 
the flux normal to the boundary. The mold-filling problem is analogous to 
the Stefan problem, a class of free boundary problems used in modeling the 
melting of solids and crystallization of liquids [5, 6]. 

2    Filling Algorithm 
The mold-filling problem in equations (3)-(8) may be solved with a variety 
of numerical schemes, including fully implicit methods which solve simulta- 
neously for free surface location and pressure, as well as more conventional 
semi-implicit methods which solve for pressure implicitly and satisfy the free 
surface condition (8) by an explicit method. We follow the latter approach, 
suggested by many researchers [7, 8, 3, 9], using a finite element solution to 
obtain pressures at discrete values of t followed by an explicit control volume 
scheme for updating the position of the free surface.   The control volume 



scheme involves domain discretization into discrete subvolumes, where each 
such control volume contains one node of the finite element mesh. Fluid flux 
across control volume boundaries is calculated from the pressure solution. 
Net inflow to a control volume is tracked as the "fill fraction." When the 
volume is filled, the node contained in the volume is considered part of the 
next pressure solution, as summarized below. 

1. Find FEM pressure solution. At the beginning of a new time step, the 
pressure field is calculated over the filled control volumes. 

2. Calculate volume flux. Darcy velocity and flux at the control volume 
boundaries are computed from the pressures calculated in step 1. 

3. Locate the free surface. The time step is calculated as the minimum 
At required to fill a control volume using the flux calculated in step 2. 
The filled volume becomes part of the pressure field, moving the free 
surface to a new position. 

2.1    Finite Element Pressure Solution 

At each time step, a free surface location Ts(t) is given from the previous step. 
The problem of solving equation (3) subject to (4)-(7) is analogous to the 
classical heat conduction problem, which has the following weak formulation. 
Define the trial function and weight function spaces, 

U   =   {p\peH\p\r,{t) = 0,p\rg=g(x)} (9) 

V   =   {w\weH\ Hrgur3 = 0}. (10) 

Given g, h, find p €U such that for all w € V, 

f (Vw)T(fx-lKVp)dn= I  whdTh. (11) 
Jü JTh 

The Galerkin formulation (in two spatial dimensions) is based on a tri- 
angulation of the mold into nel elements, 

0«T = UiTi,i = l,...,ne/, 
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Figure 2: Triangulation and Control Volume Discretization of ft. 



where the Tt- are closed triangles with nodes (vertices) Xj = (xj,yj)J = 
1, ...,n (see Figure 2). 

We have chosen to work in the space of piecewise linear functions. Let p 
be the finite dimensional approximation to p, such that p € U is a polynomial 
of degree one over each triangle. The vector p will denote the nodal values 
of p, i.e., 

[pi,...,p„]T = [p(xi),...,p(xn)]T 

and p(x) = E?=i-Ni(x)Pi)» where the shape functions Nfaj) = 6ij,i,j = 
1, ...,n are piecewise linear. The Galerkin formulation is then 

^((vNi-ifi^KVN^dn) Pj  = j  NihdTh,   i = l,...,n.       (12) 

The elements of the n x n pressure stiffness matrix A are defined 

aij = / VNt ■ ((i-'KVN^dn, i,j = l,...,n, (13) 

and the forcing vector b as 

hi =       NihdTh,   i = l,...,n. 

In matrix notation, 

Ap = b, (14) 

and the approximate pressure solution is obtained by solving a linear system 
of n equations in n unknowns. 

2.2    Control Volume Flux Calculation 

The flux calculation approximates fluid velocities by the piecewise linear 
polynomials described in the previous section, 

v(x) = J2»~1KVNi{x)pi. 



We use a node-centered control volume discretization to calculate flux 
and fluid volume fractions. The control volume discretization is built on the 
triangulation T (see Figure 2) and forms a set of closed subvolumes C,-, 

12 ?a C = \Jjd,i — l,...,n, 

such that subvolume C; contains vertex x,- and no other node. Denoting B{ 
as the boundary of C;, the flow rate into C, at time t is 

qi(t)= f n-v(t)dBi. (15) 

where n is the unit normal to £?,. 
We define Bi as the set of line segments connecting element centroids with 

edge midpoints, as follows (see Figure 3). Associated with Bi is the set of 
elements E{ = {Tj | x,- € Tj}. Without loss of generality, denote the vertices 
of Tj as x;,xi+i,xt-+2. Define the centroid of Tj as Cj = |Efct^xfc and the 
edge midpoints, mji = |(XJ + xi+1) and rn,2 = |(x,- + xt+2). The segments 
of Bi in Tj are denoted by (c,-,mji), (cj,mj2). Then qt can be written as an 
algebraic sum, 

* =  £ (^mii + /i2ni3) • £ fi-'KWNkPk (16) 
TjeEi k=i 

where nji is the unit normal vector in the plane of Tj orthogonal to (CJ, mji), 
and Iji = \\CJ — m.ji||2 is the segment length. The coefficients of p in equation 
(16) are constant for all t and are assembled prior to the filling algorithm. 

2.3    Free Surface Location 

A node X; is included in the filled domain ü(t) if control volume d has a fill 
fraction of unity. Let 5»(<) denote the fill fraction of d at time t, 

Si(t) = \Ci\~1 f qi{t)dt, (17) 

where |C,-| denotes volume adjusted for the porosity of the preform. At each 
time step, the fill fraction is updated explicitly. If ?,•(<) is the flow rate into 
d at time t, then 



/ T2   / 'XM              / 

/   T1 / T$ 

y-y 1          / 

T6   / T4   / 
XM ~m,/ X.               / 

1             / 

/ Ts / 

(a) 

(c) 

(b) 

(d) 

Figure 3: Control Volume Discretization, (a) The set E{ of elements 
supported by node i, (b) centroid and edge midpoints for Ti, (c) control 
volume d and bouundary 2?,-, (d) superimposed FEM and control volume 
discretizations. 



Si(t + At) = Si(t) + Atqi(t). (18) 

According to equation (7), the free surface location satisfies the relation 
p\Ts = 0. We define the free surface location by the nodes in unfilled or 
partially filled volumes adjacent to filled nodes, i.e., Xj is on the free surface 
if (a) Sj < 1, and (b) Xj is adjacent to a node x,- such that Si = 1. As shown 
in in Figure 2, the free surface intersects partially filled control volumes and 
that control volume flux is not actually calculated at the free surface. To 
address this fundamental discrepancy, some researchers have developed local 
refinement schemes in the flow front vicinity, e.g. [10]. Such schemes improve 
the local accuracy of the flow front approximation. However, we believe that 
if high accuracy in flow front calculations is needed, then an alternative filling 
algorithm satisfying more rigorous mathematical convergence criteria should 
be considered rather than local mesh refinement. 

2.4    Implementation 

2.4.1    Properties of the Pressure Stiffness Matrix 

The pressure stiffness matrix A in equation (14) has several important prop- 
erties which lead to an efficient implementation of the filling algorithm. The 
first property is sparsity, due to the structure of the finite element mesh. 
The order of A is equal to the number of nodes, n in the mesh. The number 
of nonzero entries in A is equal to the number of edges connecting adjacent 
nodes. Since the nodes of a finite element mesh typically are connected to 
only a few other nodes, the number of nonzeroes is far less than n2, usually 
a small multiple of n. The second and third properties of A are symmetry, 
A = AT, and positive-definiteness, X(A) > 0. 

To demonstrate positive-definiteness, it is necessary to show that K is 
always positive-definite. Experimental permeability measurements are re- 
ported for principal mat directions as a diagonal matrix with strictly positive 
entries, D = diag{kiUk22,hz)- The tensor K is obtained by transforming 
from the principal directions of the mat to the Cartesian frame (or to local 
element coordinates), i.e., K = CDCT, where C is a rank-3, orthogonal ro- 
tation matrix which projects the principal axes of the mat into the Cartesian 
or local coordinate system. Since pre- or post-multiplication by an orthogo- 
nal matrix preserves the spectrum of an operator, A(Ä") = \(D) > 0. Given 



\(K) > 0, symmetry and positive definiteness of A is a standard result in 
the finite element literature (see, for example, [11]). 

Since A is symmetric and positive definite, it has a Cholesky factorization, 
LLT = A, where L is a lower triangular matrix. It is also true that every 
submatrix of A inherits these two properties. Thus, if A is partitioned as 

*=("")• (19) 

then the matrix M has a Cholesky factorization M = LML
T

M and 

(20) 

where LMW = u and t = (s — wTw)^. As a result, the Cholesky factor of the 
stiffness matrix can be computed row by row. This is exactly the property 
required for an efficient isothermal filling algorithm. 

2.4.2    Updating the Pressure Solution 

Each time step At is calculated to fill one control volume. Filled volumes 
are considered part of the fluid phase and so the corresponding node be- 
comes part of the fluid pressure calculation. The addition of a node to the 
pressure calculation corresponds to adding a single row and column to the 
stiffness matrix. The Cholesky factorization of the updated stiffness matrix 
can be updated directly, as in equation (20). The advantage is that the stiff- 
ness matrix A need only be factored one time, rather than reassembling and 
factorizing at every time step. 

The stiffness matrix A is assembled and stored prior to filling. The full 
matrix is stored in an adjacency structure. The adjacency structure consists 
of n adjacency lists and corresponding nonzero coefficients. The ith. adja- 
cency list includes the indices of nodes which are adjacent to (share an edge 
with) node x,-. 

During the filling algorithm, nodes are added to the pressure field as 
control volumes are filled. Rows of A corresponding to these nodes are added 
to the Cholesky factor L using equation (20). Note that these rows must be 
permuted to reflect the node ordering imposed by the filling sequence. The 
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data structure used to store L is an envelope structure. For each row of the 
matrix, all entries from the first nonzero up to the diagonal are stored. 

The envelope storage scheme is a standard data structure for sparse ma- 
trix factorization. This choice permits the use of existing numerical soft- 
ware [12] for updating the Cholesky factorization and computing intermedi- 
ate pressure solutions at each time step, with only minor modifications. 

In practice, the algorithm will often fill more than one node in a single 
time step, despite the fact that the time step is calculated to fill only one 
volume. This occurs most typically in regular discretizations because a tol- 
erance is used to define the fill fraction constituting a "filled" control volume 
(e.g., 99%). 

2.4.3    CVFE Algorithm 

The CVFE algorithm requires an extensive set of inputs and initialization 
steps. For the case of a two-dimensional thin shell geometry in three dimen- 
sional space, these initialization steps include: 

• specification of a triangulation T, 

• specification of a control volume discretization C, 

• specification of local permeabilities and element thickness, 

• rotation of permeabilities to local element coordinates, 

• calculation of adjacency data structure for A, 

• assembly of A in adjacency structure, 

• assembly of flow rate coefficient matrix. 

The iterative part of the algorithm computes the filling sequence, using 
the integer arrays perm and invp to denote the ordering of A (the filling 
sequence) used in the Cholesky factorization. The notation permii) = k 
means the original node k is the ith node in the new ordering. The element 
invp(k) gives the position in perm where the node originally numbered k 
resides, i.e., perm(invp(k)) = k. We use the array subscript notation 6; = 
b(i) interchangeably. The order in which control volumes are filled determines 
the ordering of A during the Cholesky factorization. A more efficient ordering 
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t = 0;   / = 0;   m = 0; filled = false; 
while (not filled) 

compute forcing vector b 

{add row(s) to pressure stiffness factor L} 

for i = 1, ...,n {add filled control volumes to Q(t)} 
if Si(t) = 1 and x,- 3 £l(t), 

m = m + 1; {increment number of filled volumes} 
perm(i) = m\ 
invp(m) = i; 
{scatter row i from adjacency structure of A to full vector} 
w(j) <-a,ij,   j = l,...,n; 
{gather permuted row i into envelope structure for L] 
Lij +- w(invp(j)),   j = 1,... ,n; 

end if 
end for 

{solve updated pressure system} 

b(perm(i)) <— b(i),   i = 1,..., n; {permute forcing vector} 
update L,j,   i = / + 1,..., m ,   j = l,...,m           {eqn (20)} 
solve y <— Ly = b; 
solve p <— LTp = y; 
/ = m; {updated dimension of L} 
p(invp(i)) *- p,,   i = 1,..., m; {restore solution to original order} 

{update fill fractions} 

compute 3t(t), i = 1,..., n\ 
ifqi(t)z==0, i= l,...,n,STOP; {mold cannot be filled} 
At = mini[(l-Si(t)) \Ci\/qi(t)], i = l,...,n; 
Si(t + At) = Si(t) + Atqift), i = 1 ...,n; 
t = t + At; 
if Si(t) = 1, i = 1,..., n, filled = true; 

end while 

Figure 4: CVFE Algorithm in Pseudo-code. 

could be obtained by using a symbolic factorization algorithm, such as reverse 
Cuthill-McKee [13], to find an ordering which reduces the maximum envelope 
bandwidth.   Such a procedure reduces the number of nonzero elements in 
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L, and hence, the computational effort in solving Ly = b and LTx = y. 
This possibility will be addressed in the context of further research on the 
application of direct factorization methods for large-scale RTM simulation 

and parallel computation. 

2.5    Computational Complexity 

This section analyzes the computational requirements of the filling algorithm 
as a function of the problem size. The analysis is based on several assump- 
tions about typical models and is not a worst-case analysis of complexity. 

The CVFE algorithm requires 0(n) iterations or time steps, one per 
control volume (in practice, more than one volume may fill per time step). 
Each iteration requires the four procedures as summarized below. 

for k = 1, ...,n 
compute forcing vector b 0(n) operations 
add row(s) to L 0{n) operations 
solve updated pressure system 0(k1-5) operations 
update fill fractions 0(n) operations 

end while 

Three procedures require 0(n) operations per iteration, or 0(n2) opera- 
tions for all iterations. One procedure, solving the updated pressure system, 
requires 0(k1-5) operations per iteration, where A; is the iteration number. 
This procedure dominates the total computation and is explained below. 

The updated pressure system requires several sparse-matrix back substi- 
tutions using L. The number of operations in a back substitution is propor- 
tional to the number of nonzeroes in L. It is assumed that the A originally 
has 0(n) nonzeroes. This is reasonable since the maximum adjacency list 
length is typically a small constant (e.g., 6). However, it is also assumed 
that A has the structure of an n x n Laplacian matrix, with a bandwidth 
of 0(y/n), and that no reordering scheme is used. Then the fill-in of L is 
0(n1-5) nonzeroes, corresponding to fill-in between the bands. It is assumed 
that fill-in occurs at the rate Oik1-5) per iteration as rows are added to L. 

Using the following relationship, 

±k^<^J:k=l-Mn2 + n\ 
k=\ k-\        z 

13 



we bound the total computational effort as 0(n2-5). Thus, the complete 
CVFE algorithm requires 0(n2'5) operations. A CVFE algorithm which as- 
sembles and factors the stiffness matrix at each iteration would theoretically 
require 0(n2) operations per time step and 0(n3) in total. The introduc- 
tion of reordering algorithms could further reduce the complexity of both the 
CVFE algorithm described in this report as well as conventional approaches. 

3    Numerical Results 

This section summarizes implementation and performance details of the fill- 
ing algorithm. The details include type of architecture and source language, 
method of validation, comparison with related codes, and timing results for 
several test problems. 

The filling algorithm has been implemented in Fortran 77 for the Silicon 
Graphics (SGI) workstation architecture and given the code name ISOFIL. 
ISOFIL was developed under a systems integration plan based on the SGI 
Explorer program and makes use of extensions to Fortran 77, including the 
Fortran POINTER data type and the malloc procedure call. ISOFIL also 
includes routines from two public domain software libraries, BLAS (level 1) 
[14] and SPARSPAK [12]. All performance results reported in this section 
are based on the SGI model 4D-35 workstation. 

Numerical validation of ISOFIL so far has included evaluation of mass 
balance. In one validation exercise, a disk mold of radius 10.0 cm was dis- 
cretized with 800 triangles and injected at the center. The constant flow 
rate of 1.0 cm3/sec assuming a void fraction of 70%, anisotropic permeabil- 
ity (ku = 1,&22 = 0.3), and two fiber orientations. The simulated filling 
time was 213.8 sec compared to the expected (analytical) 219.6 sec, or about 
3% relative error. The same model was evaluated using a constant pressure 
injection of 1.0 kg/cm2. The mass influx was approximated by the flux across 
the control volume boundaries surrounding the injector. The resulting ap- 
proximation was 214.1 cm3 to fill the mold versus the expected (analytical) 
219.6 cm3. The CPU time was 5 sec, including input and output. 

A qualitative evaluation of the simulated flow fronts indicates that flow 
front shape is determined by element shape. This result can also be inferred 
from inspection of Figure 2. Highly elongated elements lead to elongated 
control volumes.   Elongated volumes may fill before neighboring volumes 
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begin to fill in a locally, non-physical manner. This effect demonstrates the 
need for a relatively uniform mesh with a good aspect ratio for the triangles. 

The performance of ISOFIL was compared to a predecessor code, LIMS, 
from the University of Delaware [15]. ISOFIL uses the same CVFE approach 
as LIMS to model pressure and fluid velocity. There are minor differences in 
how control volume flux is calculated. The primary differences are that LIMS 
assembles and factors the pressure stiffness matrix and the flux stiffness ma- 
trix at each time step of the CVFE algorithm. As a result, the performance 
differential between the two codes increases with n, the number of nodes. For 
a 2213-node, 4443-triangle model of the Ford Aerostar Crossmember (see be- 
low), the CPU times were 230 sec for ISOFIL and 22,389 sec for LIMS 2.2, 
a speedup factor of approximately 100. 

A set of four test problems are presented in Figure 5, including a plaque, 
disk, auto crossmember, and aircraft keel prototype. The plaque and disk 
models are simple two-dimensional geometries, while the crossmember and 
prototype keel box are thin-shell, three-dimensional structures. These mod- 
els have been simulated under various conditions, including different choices 
of injector/vent locations and material type (permeability and fiber orien- 
tation). The performance results are presented in Table 1. The larger test 
problems require several minutes of CPU time. The time to read the in- 
put deck (element mesh and material properties) is included in the results; 
however, it is not a major fraction of the total time. The error in mass bal- 
ance ranges up to 3% for the test problems and is calculated as previously 
described for the constant pressure injection case. 

Table 1: ISOFIL Performance on Four Models. Results were 
obtained on an SGI 4D-35, CPU time includes I/O. Speedup is the 
ratio of LIMS 2.2 CPU time to ISOFIL CPU time. 

Problem    Nodes    Elements    Sec.    Mass Bal.    Speedup 
disk 442 800 5 2.60% 23 
plaque 925 1728 22 0.02% 33 
xmbr 2213 4443 230 0.45% 97 
proto 2066 4116 188 0.39% na 
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Figure 5: Four Test Problems with Flow Front Histories. Clockwise 
from upper left: disk, crossmember, plaque, keel prototype. 
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4    Conclusions 

The isothermal RTM filling algorithm has a computational complexity of 
0(n2-5), compared to more general RTM algorithms which also employ the 
CVFE formulation but require 0(n3) computation. This relative advantage 
results in a 100-fold performance improvement over a similar code for a 2213- 
node model, while obtaining the same solution accuracy. 

The speed of the filling simulation is critical to applying simulation results 
to actual mold design. A fast and flexible simulation tool allows engineers to 
include modeling in the design process. The ISOFIL code is currently being 
used for interactive filling simulation of structural aircraft components in 
connection with Army procurement projects. The complete software system 
permits interactive graphical manipulation of mesh and material properties, 
as well as the location and specification of injection pressure/displacement 
time profiles. The details of this complete system will be published in a 
future report. 

Interactive simulation (and real-time control) is now feasible for small 
(n « 1,000) problems on high performance workstations and supercomput- 
ers. However the computational requirement of 0(n2-5) operations still pro- 
hibits interactive simulation of refined three-dimensional models involving 
n > 105 nodes (massively parallel supercomputers are capable of about 1010 

floating point operations per second). We are interested in simulations which 
require a matter of seconds or, at most a few minutes, of real time. This mo- 
tivates the need for further investigation of filling algorithms which depart 
from the conventional CVFE strategy. 

17 



PAGE LEFT INTENTIONALLY BLANK 

18 



References 

[1] Shawn M. Walsh and United States of America. In-situ sensor method 
and device. Patent Number 5,210,499, issued May 11, 1993. 

[2] K. Meissner and P. Sincebaugh. Preventing mechanical failures in resin 
transfer molding using embedded sensors and neural networks. Preprint, 
U.S. Army Research Laboratory, Materials Directorate, Watertown MA, 
January 1994. 

[3] C.L. Tucker and R.B. Dessenberger. Governing equations for flow 
through stationary fiber beds. In S.G. Advani, editor, Flow and Rheology 
in Polymer Composites Manufacturing. Elsevier, 1994. 

[4] S. Advani, M.V. Bruschke, and R.S. Parnas. Resin transfer molding. In 
S.G. Advani, editor, Flow and Rheology in Polymer Composites Manu- 
facturing. Elsevier, 1994. 

[5] Avner Friedman. Partial Differential Equations of Parabolic Type. 
Prentice-Hall, Englewood Cliffs, 1981. 

[6] J. Crank. Free and Moving Boundary Problems. Oxford University 
Press, Oxford, 1984. 

[7] H.P. Wang and H.S. Lee. Numerical techniques for free and moving 
boundary problems. In C.L. Tucker III, editor, Fundamentals of Com- 
puter Modeling for Polymer Processing. Hanser, Munich, 1989. 

[8] W.B. Young, K. Han, L.H. Fong, L.J. Lee, and M.J. Liou. Flow simu- 
lation in molds with preplaced fiber mats. Polymer Composites, 6(93), 
1992. 

[9] S. Advani and M. Bruschke. A finite element/control volume approach 
to mold filling in anisotropic porous media. Polymer Composites, 11(6), 
1990. 

[10] W.B. Young, L.J. Lee, and M.J. Liou. Modification of control vol- 
ume finite element method in mold filling simulation. Technical Report 
ERC/NSM-P-91, NSF Engineering Research Center for Net Shape Man- 
ufacturing, The Ohio State University, Columbus, OH, January 1991. 

19 



[11] T.J. Hughes. The Finite Element Method: Linear Static and Dynamic 
Finite Element Analysis. Prentice-Hall, Englewood Cliffs, 1987. 

[12] Sparspak. NETLIB@ornl.gov. 

[13] Alan George and Joseph Liu. Computer Solution of Large Sparse Posi- 
tive Definite Systems. Prentice-Hall, Englewood Cliffs, 1981. 

[14] Basic linear algebra subroutines. NETLIB@ornl.gov. 

[15] S. Advani and M. Bruschke. Liquid injection molding simulation user's 
manual version 2.0. Technical report, Center for Composite Materials, 
University of Delaware, Newark, DE, December 1992. 

20 



NO. OF 
COPIES ORGANIZATION 

ADMINISTRATOR 
DEFENSE TECHNICAL INFO CENTER 
ATTN:   DTIC-DDA 
CAMERON STATION 
ALEXANDRIA VA 22304-6145 

COMMANDER 
US ARMY MATERIEL COMMAND 
ATTN:   AMCAM 
5001 EISENHOWER AVE 
ALEXANDRIA VA  22333-0001 

DIRECTOR 
US ARMY RESEARCH LABORATORY 
ATTN:   AMSRL-OP-SD-TA/ 

RECORDS MANAGEMENT 
2800 POWDER MILL RD 
ADELPHIMD 20783-1145 

DIRECTOR 
US ARMY RESEARCH LABORATORY 
ATTN:   AMSRL-OP-SD-TL/ 

TECHNICAL LIBRARY 
2800 POWDER MILL RD 
ADELPHIMD 20783-1145 

DIRECTOR 
US ARMY RESEARCH LABORATORY 
ATTN:   AMSRL-OP-SD-TP/ 

TECH PUBLISHING BRANCH 
2800 POWDER MILL RD 
ADELPHIMD 20783-1145 

COMMANDER 
US ARMY ARDEC 
ATTN:   SMCAR-TDC 
PICATINNY ARSENAL NJ 07806-5000 

DIRECTOR 
BENET LABORATORIES 
ATTN: SMCAR-CCB-TL 
WATERVLIETNY  12189^050 

DIRECTOR 
US ARMY ADVANCED SYSTEMS 

RESEARCH AND ANALYSIS OFFICE 
ATTN:  AMSAT-R-NR/MS 219-1 
AMES RESEARCH CENTER 
MOFFETT FIELD CA 94035-1000 

NO. OF 
COPIES   ORGANIZATION 

1 COMMANDER 
US ARMY MISSDLE COMMAND 
ATTN: AMSMI-RD-CS-R (DOC) 
REDSTONE ARSENAL AL 35898-5010 

1 COMMANDER 
US ARMY TANK-AUTOMOTIVE COMMAND 
ATTN:   AMSTA-JSK (ARMOR ENG BR) 
WARREN MI 48397-5000 

1 DIRECTOR 
US ARMY TRADOC ANALYSIS COMMAND 
ATTN:   ATRC-WSR 
WSMRNM 88002-5502 

1 COMMANDANT 
US ARMY INFANTRY SCHOOL 
ATTN: ATSH-WCB-0 
FORT BENNING GA 31905-5000 

ABERDEEN PROVING GROUND 

DIR, USAMSAA 
ATTN:   AMXSY-D 

AMXSY-MP/H COHEN 

CDR, USATECOM 
ATTN:   AMSTE-TC 

DIR, USAERDEC 
ATTN:   SCBRD-RT 

CDR, USACBDCOM 
ATTN:   AMSCB-Cn 

DIR, USARL 
ATTN:   AMSRL-SL-I 

DIR, USARL 
ATTN:   AMSRL-OP-AP-L 

21 



NO. OF 
COPIES   ORGANIZATION 

ABERDEEN PROVING GROUND 

45 DIR, USARL 
ATTN:   AMSRL-CV 

W H MERMAGEN 
R K LODER 
H J BREAUX 
R H ROSEN 
JDGANTT 
A MARK 
B A BODT 
B E CUMMINGS 
M S TAYLOR 
M A HIRSCHBERG 
J C DUMER m 
R AHELFMAN 
RC KASTE 
TROHALY 
WBSTUREK 
A K CELMINS 
C K ZOLTANI 
NRPATEL 
S C CHAMBERLAIN 
A B COOPER 
AR DOWNS 
D AGWYN 
G W HARTWIG 
KG SMITH 
KDFICKIE 
EGHEILMAN 
TM KENDALL 
M S ORTWEIN 
J N GROSH 
D E TOWSON 
C E HANSEN 
VA KASTE 
EHBAUR 
N E BOYER 
M A THOMAS 
P G HARNDEN 
DR SHIRES 
M J MARKOWSKI 
D M PRESSEL 
T APURNELL 
P C DYKSTRA 
M A ORTWEIN 
JT BLAKE 
M J BIEGA 
JA WALL 

22 



USER EVALUATION SHEET/CHANGE OF ADDRESS 

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes.  Your 
comments/answers to the items/questions below will aid us in our efforts. 

1. APT. Report Number       ARL-TR-610 Date of Report       November  1994  

2. Date Report Received  ■  

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for 

which the report will be used.) . _ —  

4.  Specifically, how is the report being used?  (Information source, design data, procedure, source of 

ideas, etc.)   

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, 

operating costs avoided, or efficiencies achieved, etc? If so, please elaborate  

6.   General Comments.   What do you think should be changed to improve future reports?   (Indicate 
changes to organization, technical content, format, etc.)  

Organization 

CURRENT                Name 
ADDRESS   

Street or P.O. Box No. 

City, State, Zip Code 

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address 
above and the Old or Incorrect address below. 

Organization 

OLD                        Name 
ADDRESS   

Street or P.O. Box No. 

City, State, Zip Code 

(Remove this sheet, fold as indicated, tape closed, and mail.) 
(DO NOT STAPLE) 



DEPARTMENT OF THE ARMY 

OFFICIAL BUSINESS 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO 0001, APG, MD 

Postage will be paid by addressee 

Director 
U.S. Army Research Laboratory 
ATTN: AMSRL-OP-AP-L 
Aberdeen Proving Ground, MD 21005-5066 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 


